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Numerical study of steady flow past spheroids 

By JACOB H. MASLIYAH AND NORMAN EPSTEIN 
Department of Chemical Engineering, University of British Columbia 

(Received 3 July 1969 and in revised form 7 July 1970) 

Numerical methods have been used to investigate the steady incompressible 
flow past oblate and prolate spheroids for Reynolds numbers up to 100. The 
ratio of minor to major axis of the spheroids investigated were 0.9, 0-5 and 0.2, 
together with 1.0, which represents the limiting case of a sphere. The pressure 
distribution and the skin and form drag coefficients were numerically evaluated 
for the various Reynolds numbers. Streamlines, equi-vorticity lines and equi- 
velocity lines are presented and show in detail the flow characteristics. 

1. Introduction 
The study of isothermal steady laminar flow of an incompressible Newtonian 

fluid past a rigid body requires the solution of the Navier-Stokes equation and 
the equation of continuity, subject to the prevailing boundary conditions. The 
Navier-Stokes equation, being non-linear, has so far proved insoluble for the 
problem of axisymmetric flow around oblate and prolate spheroids (a sphere and 
a disk being limiting forms of an oblate spheroid), except by techniques which 
linearize the equations of motion by approximations. Such solutions are given 
by Stokes (1851), Oseen (1910), Goldstein (1929), Tomotika & Aoi (1950), 
Pearcey & McHugh (1955) and Proudman & Pearson (1957) for spheres, and 
Sampson (1891), Aoi (1955) and Breach (1961) for spheroids. 

Jenson (1959), using a finite difference method, solved the Navier-Stokes 
equation for the flow past a sphere at  R up to 40 by splitting the fourth-order 
equation in the stream function into two second-order equations, after Thom 
(1927). Subsequently Jenson, Horton & Wearing (1968) extended this work to 
R = 80. Rhodes (1967) and LeClair & Hamielec (1968) extended Jenson’s 
technique with the aid of digital computers to R of 100 and 1000, respectively. 
But their results for an isolated sphere at  low R are not conclusive, inasmuch as 
their porosities are insufficiently high to accurately represent an infinite medium 
(Masliyah & Epstein 1969). 

Rimon & Cheng (1969) obtained the transient uniform flow around a sphere 
for R up to 1000. Their results for the surface pressure distribution at  ‘steady 
state’ conditions for R = 10 are, however, a t  variance with those of Pearcey & 
McHugh, of Jenson and of Rhodes. Rimon & Lugt (1969) arrived at  the steady 
state solution for flow past oblate spheroids at R = 0 and R = 100 by solving the 
time-dependent Navier-Stokes equation. 
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2. FormuIations 
The choice of spheroidal co-ordinates in this study facilitates the formulation 

of the spheroidal boundary conditions and the use of a finite difference method. 
In  addition, the exponential properties of the spheroidal co-ordinates give a fine 
lattice near the surface of the spheroid in general and near the tips in particular, 
and a coarse lattice far away from the surface. Happel & Brenner (1965) discuss 
spheroidal eo-ordinates in detail. 

Using oblate spheroidal co-ordinates ([, 7) the Navier-Stokes equation can be 
written as 

sechtaE2(E2$) = - 

with 

and E2$ = g cosh sin 7 sechS ta. (3) 

The following dimensionless quantities are used: 

$ = $'IUa2, R = 2aU/v and = CalU, 

where R is the Reynolds number, U is the velocity of the undisturbed stream, 
v is the kinematic viscosity of the fluid, $ is the dimensionless stream function 
and [ the dimensionless vorticity, while the primed symbols represent the 
corresponding dimensional quantities. The term a is the length of the major 
semi-axis of the spheroid, and is equal to c coshEa, where [a is the value of [ 
a t  the surface of the spheroid, c being a characteristic length of the co-ordinate 
system. 

For a spheroid which is almost spherical, cosht becomes very large, and 
difficulty will be encountered in the numerical analysis. For this reason the 
following functions are introduced: 

and 

5 cosh t sin 7 
cosh Ea ' c =  (4) 

(5) 

Splitting (1) into two equations, one in terms of $, [ and 7, and the other in 
terms of E2$, 6 and 7, and introducing (4) and (5), yields 

and E2+ = Gsech2Ea. (7) 

The solution of the above two simultaneous differential equations in the stream 
function and in the modified vorticity G could be achieved by using Jenson's 
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relaxation technique. This technique involves approximating the differential 
equations by finite difference equations which relate the values of neighbouring 
points on a flow grid. The solution of these equations is followed by interpolation 
between the grid points over the whole field of influence. The details of the 
numerical analysis are given by Masliyah (1970). 

For a prolate spheroid, the governing equations could be obtained from those 
of an oblate spheroid by replacing each sinht by icosht and each coshc by 
i sinh 6. By this procedure the term u will then represent the length of the minor 
semi-axis. 

3. Boundary conditions 
Although the flow is considered to be in an infinite medium, it is not possible 

to perform the numerical analysis in an infinite domain. The field of computation 
is therefore restricted by an outer spheroidal envelope which, like the spheroidal 
surface, coincides with one of the spheroidal co-ordinate grid lines as shown in 
figure 1. 

FIGURE 1. Oblate spheroid with its outer envelope. 

As the two flow equations are of second order, four boundary conditions are 
to be satisfied. For an oblate spheroid, the boundary conditions for 9 are, 

for 7 = 0, along BA, @ = 0, 

7 = n, along NO, @ = 0,  

6 = ta, along A M N ,  9 = 0 (surface of spheroid). 

axis of symmetry, 
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At the outer boundary, 
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= &,, the flow is assumed to be a streaming parallel 

for 7 = 0, along BA, 5 = 0, 

7 = T ,  along NO, = 0, 

flow, giving 

. 
axis of symmetry, 

@ = 8 sin2 7 cosh2 &, sech2 t,. 
The boundary conditions for 5 are, 

E2@ cosh2 6 = la, alongAMN, 5= 
sin 7 

The last boundary condition for vorticity could be written in finite difference 
form by assuming the no-slip condition a t  the surface of the spheroid, and by 
expanding E2@ using Taylor’s series expansions correct to the third order. Again, 
the boundary conditions for a prolate spheroid could be obtained by replacing 
sinh 6 with i cosh 6 and cosh 6 by i sinh 6. 

4. Pressure distribution and drag coefficients 

coefficient, 
The drag on a body is usually expressed in terms of a dimensionless drag 

drag force in the flow direction 
- projected area normal to the direction of flow x kinetic pressure’ 

c -  

The skin drag coefficient is given by 

In the limiting case of a sphere, tanh&, is unity, and equation (8) becomes 
identical to that given by Jenson for a perfect sphere. For an infinitesimally 
thin circular disk, tanh 6, is zero, and thus (8) shows a zero skin drag coefficient, 
in conformity with simple geometrical considerations. 

Referring to figure 1, the pressure distribution around the oblate spheroid is 
given by 

where the dimensional pressure p’ was rendered dimensionless by putting 

pit  being the static pressure. The dimensionless frontal stagnation pressure, Po, 

(10) 

is given by 
8 c b a c  

Po = l + j J l r ~  ?)=O at.  
The form or pressure drag coefficient is then given by 
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The total drag coefficient is obtained by adding the skin and form drag co- 
efficients. The corresponding equations for a prolate spheroid could be derived 
by the usual transformation. 

5. Low Reynolds number flow 

R = 0 becomes E4@ = 0, where 
The flow equation in terms of the stream function for an oblate spheroid at 

and h = sinh 6, 0 = cos 7. For the boundary conditions of no slip at the surface 
of the spheroid, and streaming flow and zero vorticity at  the outer envelope, the 
above flow equation has no closed separable solution when the outer envelope 
is at  a finite distance from the spheroid. This conclusion, which could be derived 
by carefully examining Sampson's solution, was also obtained by O'Brien (1961). 

For the flow past a spheroid in an infinite medium, the Stokes solution gives 
the following total drag coefficient: 

CDT = 24K/R, (12) 

where Koblate = 1/[$(hi+ I)$ [A,- (A:- 1) COt-lha]] (13) 

Kprolate = l/[$(r; - l)* [(r; + 1) coth-l r, - r,]] (14) 

and r, = cosh 6,) the subscript a denoting the surface of the spheroid. 
The expression given by Oseen (1927) and Aoi could be written as 

Breach's expression, after some transformation, becomes 

3KR 9K2 24K [ 1 + - + ~ R21n (:)I 
CDT = R 16 160 

The above expressions for the total drag coefficients show clearly the deviation 
of an oblate and a prolate spheroid from a sphere with the same equatorial 
diameter. For a sphere, K = 1, and (12)) (15) and (16) reduce to the well-known 
Stokes, Oseen and Proudman & Pearson expressions, respectively. Despite a 
misprint in their expression for Koblate, Happel & Brenner provide an 
accurate tabulation of K as a function of aspect ratio for both oblate and prolate 
spheroids. For a thin circular disk (A.R. = 0 ) ,  the tabulated value of K is 
0.84883. 

The dimensionless surface pressure distribution for the Stokes flow past an 
oblate spheroid is 

6Koblate [ + 1 ] 
p = 1 + -  cos 'I, R h2,+cos2~ 

32 *LM 44 
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and, for a prolate spheroid, 
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For a sphere, K -f 1, A, --f co, and (17 )  and (18) both become 

P = 1 + (6/R) COST. (19) 

When R --f 0, P becomes anti-symmetric about rj = in. 

Oseen's expansion as given by Aoi are respectively 
The ratio CD,/cD, for a prolate, and cDslCDF for an oblate, spheroid from 

and 

- (7: - I )  (7, c 0 t h - l ~ ~  - 1) 
cDF/cDs = 1 - (7; - 1) (7, c ~ t h - ~ ~ ,  - 1) ' 

1 - (A;+ 1) (1 -A, cot-1 A,) 
cm'cD, = (A: + 1) (1 -A, cot-1 A,) 

According to the above equations, the drag coefficient ratios are independent 
of R. 

6. Validity of the finite difference solution 
In  the relaxation procedure, misleading results could be obtained from the 

values of the field functions at the lattice points unless great care were taken by 
considering the various computational parameters that could influence the flow 
field. These parameters are: (i) the number of Taylor expansion terms used, 
(ii) convergence tolerance, (iii) mesh size, (iv) position of the outer boundary, 
and (v) the differentiation technique. Comments on each parameter follow. 

(i) The flow equations were transformed to finite difference equations by using 
second-order Taylor expansions. Jenson, in his work on spheres, used both 
second- and fourth-order Taylor expansions for R = 5 ,  and found no difference 
in, the accuracy of the final values of the drag coefficients for a lattice spacing of 
12" in the angular, and 0.2 unit of lnr  (where r = dimensionless, radial co- 
ordinate) in the radial, direction. Although a similar insensitivity to the order 
of the Taylor expansion would be less probable for a spheroid of small aspect 
ratio, the second-order expansion was neverthelessused throughout this analysis, 
in order to keep the computer time within reasonable bounds. 

(ii) Convergence of the computed values for the stream function and vorticity 
was assumed when no further change was apparent in the fourth significant 
figure of any function between successive iterations. With such a tolerance, the 
drag coefficients and surface pressure distributions would not change by more 
than 0.2 and 0.5 yo, respectively, for a further 50 iterations. During the course 
of this work it was found that, while the drag coefficients were not very sensitive 
to the degree of convergence of the lattice points, PV== was very sensitive to the 
degree of convergence. 

(iii) The effect of the mesh size for the oblate spheroids a t  R = 50 and R = 100 
was eva,luated by changing the grid size for the angle from 2: 6' to 2: 3", and the 
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radial step from II 0.06 to N 0.03. The resulting change in the total drag co- 
efficients for the two Reynolds numbers a t  any aspect ratio was less than 1 and 
2 %, respectively. No change in the dimensionless frontal stagnation pressure 
was detected, but the rear stagnation pressure was altered by about 30 yo, which, 
however, represented only a 5% change relative to the frontal stagnation pressure. 
For lower R, the larger step size was used, because the rate of change of the flow 
functions with step size was not as rapid as that for higher values of R. The shape 
of the wake was found not to be different for the two mesh sizes used. For the 
prolate spheroids, the step size was found to be more critical, and therefore a 
smaller step size was used throughout. A change in step size of 2: 6" in the angular 
and 2: 0.04 in the radial direction to 2: 3" and N 0.02, respectively, for R= 100 
and A.R.t = 0.5, gave a 4 %  difference in the total drag coefficient, using the 
same differentiation and integration formulae. Po was simultaneously changed 
by 1 % and P7=,, by about 6 % relative to Po. 

(iv) For numerical analysis purposes, the field of computation must be re- 
stricted within an outer spheroidal envelope, the position of which poses an 
important factor in the numerical results. The analytical solution of the creeping 
flow equations for a sphere surrounded by an outer spherical envelope under the 
boundary conditions of the present study results in a total drag coefficient, which 
is given by 

where y is the diameter ratio of solid sphere to spherical envelope.$ Then 

This indicates that even when the outer envelope is located at 100 diameters 
from the sphere, its influence on the drag coefficient is still perceptible. The drag 
coefficients at  R = 1.0 for both oblate and prolate spheroids were extrapolated 
to infinite envelope volume from a plot of C,, against the reciprocal of the mean 
diameter d,, defined as the total volume of the outer envelope divided by the 
volume of the spheroid, all raised to the power one-third. The range of d, actually 
computed was 17-102, as shown in figure 2. At R = 10 the difference between 
the computed values of the drag coefficients for d, of 17 and 30 was negligible 
for both the oblate and the prolate spheroids. For higher R, the values of d, used 
to represent an infinite medium were 15 and 17 for prolate and oblate spheroids, 
respectively. At these values of d,, the value of P at the outer envelope did not 
exceed 0.05, which is a measure of the error imposed by the presence of the outer 
envelope. 

(v) The evaluation of the pressure distribution, as given by (9) and (lo), in- 
volved both differentiation and integration. The latter posed no difficulty, and 

t Ratio of minor to major axis of the spheroid. 
$ The expression for the drag coefficient has been arrived at  by summing the shear stress 

and the pressure at  the surface of the sphere. However, Kuwabara (1959), using the same 
boundary conditions, obtained a different expression for C,, by evaluating the drag coef- 
ficient from the energy dissipation, the difference being due to the energy loss at the outer 
envelope, which becomes negligible for the low values of y used in the present study. 

32-2 
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it was found that Simpson’s rule (3  points) and Boole’s rule ( 5  points) gave almost 
identical results. On the other hand, numerical differentiation could give an 
uncertainty in the computed values of P, and consequently in the form drag 
coefficient. In  order to examine the stability of the differentiation, Lagrange 
differentiation formulae for 3,4 and 5 points were used. In general, for an oblate 
spheroid, the variation in the computed values of C,, was within 0.5 %. For a 

29 - 

26 - 

24 - 4 - 
23 - 

I I I I I I 

A.R. 
0.2 

.Piolate 

0.5 

0.9 
0.999 
0.9 

Oblate 

0.5 

0.2 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

d i l  

FIGURE 2. Variation of total drag coefficient with the position of the 
outer envelope for R = 1.0. 

prolate spheroid, however, difficulty was encountered, C,, varying as much as 
20 yo for an aspect ratio of 0.2. An examination of (9) and its numerical evaluation 
indicates that the value of 8c/8<lt=6a at low aspect ratio is negative and nearly 
equal to ca tanh &, except near the tips of the spheroid, resulting in the flatness 
of the surface pressure distribution for A.R. = 0.2 shown in figures 9 and 11. 
This gave rise to a large error in the computed value of P and hence CDF. For- 
tunately, for the small aspect ratios, the major contribution to CDT is from the 
skin drag coefficient, which could be obtained with good accuracy. For R = 1, 
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and A.R. = 0-2 and 0.5, the Lagrange 5-point differentiation formula as com- 
pared to the 3-point formula gave a value of C,,/cD, closer to that given by (20). 
For higher R, only the 5-point formula was used. 

7. Numerical results 
For an aspect ratio of unity, the spheroid becomes a perfect sphere. In  this 

study, an oblate spheroid with A.R. of 0.999 was considered to be a sphere. The 
variation of the total drag coefficient with R obtained for the limiting case of a 
sphere is shown in figure 3. The present computed results agree well with the 
experimental values summarized by Lapple & Shepherd (1940). The reason 
that the computed values of CDT in general are above the experimental curve 
seems mainly t o  be that the outer envelope was not taken far enough for its 
influence to be negligible. The same direction of influence would be expected 
from the presence of walls confining the flow field. 

R 

FIGURE 3. Variation of total drag coefficient with Reynolds number for a sphere. -, 
Lapple & Shepherd (experimental); -----, Oseen; -.-.-.-.- , Proudman & Pearson; 
_ _ -  ,Stokes;@,thisstudy; 0, Jenson;a,Rhodes; @,LeClair &Hamielec;.,Rimon& 
Lugt. 

The variation of the total drag coefficient with Reynolds number of an oblate 
spheroid having various aspect ratios is given in figure 4. At low R, an oblate 
spheroid with higher A.R. gives a higher drag coefficient, i.e., CDT for a sphere 
is higher than that for a circular disk. For higher R, this tendency is eventually 
reversed, and a spheroid with lower A.R. gives a higher CDT. At low R, for which 
the contribution ofCDs to CDT is large, this result appears to be quite reasonable, 
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since a t  a fixed value of R all the spheroids may be considered to have the same 
equatorial diameter (for constant U and v), and consequently the surface area, 
and hence the skin drag coefficient, increases with A.R. For higher values of R 
the wake bubble becomes much larger for an oblate spheroid as A.R. decreases; 
and, since normally high form drag coefficients are associated with large wakes, 
and increasing R increases the relative contribution of C,, to  CDT, the result is 
that, at sufficiently high R, CDT for a low aspect ratio is higher than that for a 
sphere. Experimental work on disks by Schmiedel(1928) indicates that the C,,-R 

I 1 I I I I I l l  I 1 I I I I I I  

30 

R 

FIGURE 4. Variation of total drag coefficient with Reynolds number for various aspect 
ratios of an oblate spheroid. 4 , Rimon & Lugt, A.R. = 0.2. 

curve for a disk crosses that of a sphere at R N 50. A disk may be thought of as 
the limiting oblate spheroid of zero aspect ratio. The total drag coefficient given 
by Rimon & Lugt for A.R. = 0.2 a t  R = 100 is in agreement with the present 
work. 

Figure 5 shows the variation of c,, with R for various aspect ratios of a prolate 
spheroid. The comparison at a fixed value of R may once again be considered as 
based on spheroids having the same equatorial diameter for fixed U and 1’. 

The ratio of skin to form drag coefficient for oblate spheroids a t  different 
Reynolds numbers is shown in figure 6 as a function of aspect ratio. At R = 1.0, 
Aoi’s expression, as given by ( 2  1 ), is in good agreement with the present numerical 
study. The relative contribution of CDs to CDT decreases with R for all aspect 
ratios. The same is observed for prolate spheroids as given by the plot of cD,/cD, 
ws. A.R. in figure 7. Aoi’s expression, (20), is again in good agreement at  R = 1.0. 
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However, the relative contribution of CDs to CDT increases with A.R. for an 
oblate, but decreases for a prolate, spheroid. 

The dimensionless pressure distribution at  the surface of an oblate spheroid 
for different A.R. is shownin figure 8 for R = 1.0. The Stokes pressure distributions 
for both a sphere and an oblate spheroid with A.R. = 0-2 are in good agreement 
with the computed distributions, considering that even for a sphere the Stokes 
regime is strictly valid only for R < 0.1. It is interesting to note sharp maxima 
and minima for A.R. = 0.2, less pronounced ones for A.R. = 0.5, and none at  all 

so 

3c 

20 

10 

CDT 

< 

? 

1 I I I I I I I 

R 
FIGURE 5. Variation of total drag coefficient with Reynolds number for various aspect 

ratios of a prolate spheroid. 

for A.R. of 0-9. The exact value of A.R. where maxima and minima would be 
obliterated for the Stokes flow could be found from (17). The dimensionless 
surface pressure distribution on a prolate spheroid with different A.R. is given 
in figure 9 for R = 1.0. A comparison with the Stokes pressure distribution for 
A.R. = 0.2 shows general agreement in the shape of the curve, but a considerable 
difference in the frontal stagnation pressure. For R = 100, the surface pressure 
distributions for the oblate and prolate spheroids are given in figures 10 and 11, 
respectively. For an oblate spheroid with A.R. = 0.2 the pressure increases 
rapidly just before the boundary-layer separation point, whereas for the same 
A.R. for a prolate spheroid the pressure increases slowly and no separation is 
observed. For a nearly perfect sphere (A.R. = 0.999), the surface pressure dis- 
tribution is in excellent agreement with that of a perfect sphere, given by 



2
0
 

1.
8 

1.
6 

I ,
4 

1.
2 

1 .0
 

C,
SI

C,
, 

0.
8 

0.
6 

0.
4 

0.
2 

I 
I 

I 

A
.R

. 

F
IG

U
R

E
 

6.
 S

ki
n 

to
 f

or
m

 d
ra

g
 c

oe
ff

ic
ie

nt
 r

at
io

 
v

ar
ia

ti
o

n
 w

it
h

 a
sp

ec
t 

ra
ti

o
 f

o
r 

o
b

la
te

 s
ph

er
- 

oi
ds

; 
_

_
 , t

h
is

 s
tu

d
y

; 
0
,
 

A
oi

. 

::I
1,

 
I 

I 
' 

'0 
0.

2 
0.

4 
0.

6 
0

,s
 

1.
0 

A
.R

. 

F
IG

U
R

E
 

7
. F

o
rm

 t
o

 s
k

in
 d

ra
g

 c
od

fi
ci

ei
it

 r
at

io
 

v
ar

ia
ti

o
n

 t
v
it

h
 a

sp
ec

t 
ra

ti
o

 f
o

r 
p

ro
la

te
 s

p
h

er
- 

oi
ds

; 
_

_
 , t

h
is

 s
tu

d
y

; 
0
,
 

A
oi

. 



Numerical study of steady $ow past spheroids 505 

Hamielec, Hoffman & Ross (1967). However, the pressure distributions given 
by Rimon & Lugt for A.R. = 1 (sphere) and'A.R. = 0.2 tend to deviate from the 
present work at  the rear end of the particles, as shown in figure 10. This might be 
due to steady-state conditions not being fully reached by the transient approach 
of Rimon & Lugt. 

10 

5 

P O  

-5 

- 10 

- 15 
0 

I I 
n 

47l n 

71 
FIGURE 8. Dimensionless surface pressure distribution for various aspect ratios of an oblate 

spheroid at R = 1.0. - - - -, Stokes. 

It is interesting that the frontal stagna,tion pressure for the various aspect 
ratios of both oblate and prolate spheroids differ considerably from each other, 
Po for an oblate spheroid with A.R. = 0.2 being closest to unity at  both R = 1.0 
and R = 100. Moreover, this deviation from unity increases with decreasing 
Reynolds number. This seems t o  confirm two well-observed characteristics of 
static Pitot tubes, namely, that the correction factor is large for low R and that 
it varies considerably for different tip shapes (Folsom & Arbor 1956). 
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0 t n  n 

I 
FIGURE 11. Dimensionless surface pressure distribution for various aspect ratios of a 

prolate spheroid at R = 100. 

- 5  10 20 40 60 100 

R 

FIGURE 12. Variation of the dimensionless frontal stagnation pressure with Reynolds 
number for A.R. = 0.2; - , boundary-layer theory; a, prolate spheroid (this study); 
V,  oblate spheroid (this study). 
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At high Reynolds numbers, Homann's (1936) boundary-layer formula for the 

A 
R 

frontal stagnation point is 
Po = 1 + - +  .... 

The constant A can be computed theoretically from the outer flow solution as 
described by Grove, Shair, Petersen & Acrivos (1964). For oblate spheroids, the 
result, a's evaluated by Masliyah, is 

8 secht, 
R I-: cot-l A, - A,' 

Po= 1 + -  

The above expression is compared with the present numerical work for A.R. = 0.2 
in figure 12. The agreement is fairly close for the higher R. 

- - 0.05 - -  . 
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0.5 - > 1 .o 
0.5 

_ - - - - -  

0.05 

(4 
FIGURE 13. Streamlines for oblate spheroids with aspect ratio 0.2; - - - -, vorticity lines. 

R: (a )  10, (71) 50, ( c )  100. 
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FIGURE 14. Streamlines for oblate spheroids with aspect ratio 0.5; - - - -, vorticity lines. 
R: (a )  10, ( b )  50, ( c )  100. 
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FIGURE 15. Streamlines for prolate spheroids: ( a )  A.R. = 0.5, 
( b )  A.R. = 0.2; - - -, vorticity lines. R = 100. 
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The appearance of the wake bubble behind a spheroid is clearly a function of 
the solid body's shape and of the Reynolds number. It was found that a wake 
bubble develops for R as low as 20, 10 and 5 for an oblate spheroid with A.R. 
of 0.9, 0.5 and 0-2, respectively. For an almost spherical oblate spheroid 
(A.R. = 0.999), this work shows no marked vortex development at R = 20, 

", 

1 .o 

- - - _ _ _  

FIGURE lG. Iso-velocity lines for Reynolds number 100; (a) oblate spheroid;with A.R. = 0-2; 
(b )  nearly spherical oblate spheroid (A.R. = 0.999); (c) prolate spheroid with A.R. = 0.2. 
- - _  , streamlines. 
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though a separation was indicated a t  this R by a negative vorticity at  7 = 4.5'. 
At R = 100 and A.R. = 0.2 the angle of separation for an oblate spheroid was 
numerically determined to be 99.7", in excellent agreement with Rimon & Lugt. 
For a prolate spheroid of A.R. = 0.2, no vortex was observed even for R of 100. 

The deviation of the flow from the Stokes regime, in which symmetry prevails, 
is best observed by the asymmetry of the vorticity lines, which are a measure of 
the shear stress at  the surface. The vorticity is generated upstream and is carried 
by the fluid around the spheroid to considerable distances downstream. Stream- 
lines and equi-vorticity lines at various Reynolds numbers and aspect ratios for 

4 
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WLIH 

1 

n 
0 

I I 

so 
R 

1 oc 

FIGURE 17. Variation of wake length with R for spheroids. Oblate spheroids: 0, A.R. = 0-2; 
V, A.R. = 0.5; A, A.R. = 0-9; 0, A.R. = 0.999 (sphere). Prolatespheroids: 0 ,  A.R = 0.9; 
a, A.R. = 0.5. Sphere: - - -, Van Dyke. 

oblate and prolate spheroids are shown in figures 13-15. It is interesting to note 
that the streamline of magnitude 4.0 tends to be less curved with increasing R, 
indicating that the flow becomes undisturbed at  a shorter distance from the 
spheroid a.s R increases. This result correlates with the fact that the wall effect 
on the drag coefficient decreases with increasing R, as experimentally shown by 
McNown et al. (1948). 

The equi-velocity lines at R = 100 for both an oblate and a prolate spheroid 
having an aspect ratio of 0.2, and for an almost spherical oblate spheroid, are 
shown in figure 16. It is interesting to note that the streamline enclosing the 
wake for the 0.2 aspect ratio oblate spheroid (figure 16( a ) )  has approximately the 
same curvature over the wake region as the equi-velocity line of unity, and it 
may be a conjecture that both lines coincide with each other when the Reynolds 
number is increased indefinitely. Also, it can be seen that the centre of the vortex 
lies in a region of low velocity. 
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The variation of the dimensionless wake length with R is shown in figure 17. 
It is interesting that Van Dyke’s (1964) equation, derived from Oseen’s approxi- 
mation for the wake length behind a sphere, is in excellent agreement with the 
values of wake length computed for a nearly spherical oblate spheroid (A.R. = 

0.999). 

The authors are indebted to the University of British Columbia and to the 
National Research Council of Canada for continuing financial support. Thanks 
are also due to  the U.B.C. Computing Centre for writing the contouring programs 
of figures 13-16. 
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